2009) managed to increase the gender recognition quality to 89.2%, using sentence length, 35 non-dictionary words, and 52 slang words.

The authors do not report the set of slang words, but the non-dictionary words appear to be more related to style than to content, showing that purely linguistic behaviour can contribute information for gender recognition as well.

For gender, the system checks the profile for about 150 common male and 150 common female first names, as well as for gender related words, such as father, mother, wife and husband.

tsjechie vrouwen dating-12

The general quality of the assignment is unknown, but in the (for this purpose) rather unrepresentative sample of users we considered for our own gender assignment corpus (see below), we find that about 44% of the users are assigned a gender, which is correct in about 87% of the cases.

Another system that predicts the gender for Dutch Twitter users is Tweet Genie ( that one can provide with a Twitter user name, after which the gender and age are estimated, based on the user s last 200 tweets.

Computational Linguistics in the Netherlands Journal 4 (2014) Submitted 06/2014; Published 12/2014 Gender Recognition on Dutch Tweets Hans van Halteren Nander Speerstra Radboud University Nijmegen, CLS, Linguistics Abstract In this paper, we investigate gender recognition on Dutch Twitter material, using a corpus consisting of the full Tweet production (as far as present in the Twi NL data set) of 600 users (known to be human individuals) over 2011 and We experimented with several authorship profiling techniques and various recognition features, using Tweet text only, in order to determine how well they could distinguish between male and female authors of Tweets.

We achieved the best results, 95.5% correct assignment in a 5-fold cross-validation on our corpus, with Support Vector Regression on all token unigrams.

With only token unigrams, the recognition accuracy was 80.5%, while using all features together increased this only slightly to 80.6%. (2014) examined about 9 million tweets by 14,000 Twitter users tweeting in American English.

They used lexical features, and present a very good breakdown of various word types.

In this case, the Twitter profiles of the authors are available, but these consist of freeform text rather than fixed information fields.

And, obviously, it is unknown to which degree the information that is present is true.

In this paper we restrict ourselves to gender recognition, and it is also this aspect we will discuss further in this section.

A group which is very active in studying gender recognition (among other traits) on the basis of text is that around Moshe Koppel. 2002) they report gender recognition on formal written texts taken from the British National Corpus (and also give a good overview of previous work), reaching about 80% correct attributions using function words and parts of speech.

Later, in 2004, the group collected a Blog Authorship Corpus (BAC; (Schler et al.